1. Visual Studio React Project
  2. Vscode React
  3. Visual Studio React Typescript
  4. Visual Studio React Project
  5. Visual Studio React Native

To become a better React developer, you don't always have to learn an entirely new, challenging skill. You can instantly improve your React code in a few minutes by using the powerful features your development tools make available.

  1. Note that native HTML element names start with a lowercase letter, while custom React class names begin with an uppercase letter. At this point, run your application by clicking the 'Play' button in Visual Studio. If successful, your default browser should start and you should see 'Hello, world!
  2. When installing the extension React development could be really fun As VS Code from version 0.10.10 supports React components syntax inside js files the snippets are available for JavaScript language as well. In the following example you can see the usage of a React stateless component with prop types snippets inside a js and not jsx file.

Some of the biggest improvements in your work as React developer take the smallest amount of time to learn. Make an effort today to apply these tips and I guarantee you'll save many hours of tedious work in your daily coding, plus you'll enjoy coding with React much more.

Here are five shortcuts that you can take advantage of right now to become a more productive React coder.

React Studio has an advanced visual layout engine that lets you create smart keylines, use relative sizes together with device-independent offsets, and position elements on screen relative to screen edges, keylines, or preceding elements. React is a popular JavaScript library developed by Facebook for building web application user interfaces. The Visual Studio Code editor supports React.js IntelliSense and code navigation out of the box. Welcome to React # We'll be using the create-react-app generator for this tutorial. React is a popular JavaScript library developed by Facebook for building web application user interfaces. The Visual Studio Code editor supports React.js IntelliSense and code navigation out of the box.

These tips largely feature how to get more out of your code editor. The code editor I use is Visual Studio Code, which is very popular among React developers. If you want to use VSCode, you can download it for free at code.visualstudio.com. Note that these features are available in virtually all code editors.

1. Tired of writing closing tags for every JSX element? Use Emmet.

As a React developer, you write a lot of JSX elements, most of which consist of an opening and closing tag.

If you don't have Emmet setup with React, you have to write both of these tags by hand for every element. A far better approach is to use a tool called Emmet, which automatically creates the closing tag whenever you create the opening one.

To setup Emmet with React in VSCode:

  1. Go to Code (at the top of your screen), then Preferences, then Settings in VSCode
  2. In the options on the left, select Extensions, then Emmet
  3. Scroll to the Include Languages section, add in the item input, javascriptand in the value input, javascriptreact and hit Add Item

And just like that, Emmet has sped up your coding by 100%:

2. Tired of formatting your code by hand? Use Prettier.

Can you count the number of times your code hasn't been aligned probably so you tried to adjust the spacing yourself? I don't want to even think about how much time I've spent formatting my own code!

If you're still trying to format your code manually, you need Prettier.

Prettier is aptly named: it turns your misaligned code into a much prettier, formatted version.

Prettier is available as a devDependency for individual JavaScript projects or you can use it across all of your projects with the Prettier VSCode extension. The benefit of using the VSCode extension is that you can automatically format your JavaScript code every time you hit save.

Here's how to setup Prettier to use across all your projects in VSCode:

Visual Studio React
  1. Go to Code, then Preferences, then Extensions
  2. Search for prettier in the search input and hit enter (it should be the first one to come up)
  3. Select the extension, then hit Install (and possibly Reload to apply the extension)
  4. Go to Code, then Preferences, then Settings
  5. Search for Format on Save and select the checkbox next to the format on save option

Now all of the code you write will be formatted perfectly, every time you save:

3. Do you write out every single component you make? Use React snippets.

Creating many things in React and in JavaScript projects in general requires a lot of boilerplate. Every time you write a component you have to type out every part of it – import React, create a function, and export it from your file.

Do you get tired of having to do this? We all do. That's why snippets for React exist.

To avoid all the extra work of writing the same code again and again, use React snippets. Snippets allow you to use keyboard shortcuts to instantly write every part of your React code instead of having to type it all out manually.

For example, instead of writing import React from 'react' you can just write imr and hit the Tab key to instantly create the same thing. Snippets are a huge timesaver.

Here's how to use React Snippets in VSCode:

  1. Go to Code, then Settings, then Extensions
  2. Search for React Snippets. There are many good snippet extensions to choose from.
  3. When you have a snippet extension installed, take a look at the shortcuts available and write the best ones down.
  4. When you type a shortcut, wait for the suggestion to appear in your code editor and then hit Tab (you can arrow through the list if you want a different one)

You'll be shocked at how quickly you can make your components now:

4. Do you import all your components manually? Use auto import instead.

One of the most tedious things to do in creating React apps is importing packages and components from other files.

It's very repetitive and can take a significant amount of energy to import every single thing by hand (plus to correct when you make a typo).

Instead of having to remember, find, and manually import your components and packages, let your code editor do it for you. You can auto import whatever you like by selecting what you want to import by pressing the Tab key.

Here's how to auto import packages and components in VSCode:

  1. Go to Code, then Preferences, then Settings
  2. Search auto import and make sure the Enable Auto Import checkbox is selected
  3. Go back into your project, write the name of what you want to import, arrow through the options the editor suggests, and hit Tab to instantly create an import statement for it.

When you use auto import, it makes working with projects of any scale easier, because you no longer spend half of your time writing import statements.

5. Do you manually remove your unused imports? Use the organize imports shortcut.

Along with having Prettier for all of the code that we write, VSCode gives us a shortcut called organize imports that does just that. In fact, it does two things:

  1. It alphabetically organizes our import statements
  2. It removes unused import statements (instantly fixes linting warnings about unused imports)

And best of all, this shortcut requires no setup. Here's how to use it:

  1. Go to View, then Command Palette.
  2. Search for organize imports and select it.
  3. Your imports should now be organized and any unused imports removed.

Note that you can use the keyboard shortcut command/control + shift + o as well.

Enjoy this post? Join The React Bootcamp

The React Bootcamp takes everything you should know about learning React and bundles it into one comprehensive package, including videos, cheatsheets, plus special bonuses.

Gain the insider information hundreds of developers have already used to master React, find their dream jobs, and take control of their future:


Click here to be notified when it opens

-->

Visual Studio allows you to easily create a Node.js project and experience IntelliSense and other built-in features that support Node.js. In this tutorial for Visual Studio, you create a Node.js web application project from a Visual Studio template. Then, you create a simple app using React.

In this tutorial, you learn how to:

  • Create a Node.js project
  • Add npm packages
  • Add React code to your app
  • Transpile JSX
  • Attach the debugger

Before you begin

Here's a quick FAQ to introduce you to some key concepts.

What is Node.js?

Visual Studio React Project

Node.js is a server-side JavaScript runtime environment that executes JavaScript server-side.

What is npm?

npm is the default package manager for the Node.js. The package manager makes it easier for programmers to publish and share source code of Node.js libraries and is designed to simplify installation, updating, and uninstallation of libraries.

Visual studio react

What is React?

React is a front-end framework to create a UI.

What is JSX?

JSX is a JavaScript syntax extension, typically used with React to describe UI elements. JSX code must be transpiled to plain JavaScript before it can run in a browser.

What is webpack?

webpack bundles JavaScript files so they can run in a browser. It can also transform or package other resources and assets. It is often used to specify a compiler, such as Babel or TypeScript, to transpile JSX or TypeScript code to plain JavaScript.

Prerequisites

  • You must have Visual Studio installed and the Node.js development workload.

    If you haven't already installed Visual Studio 2019, go to the Visual Studio downloads page to install it for free.

    If you haven't already installed Visual Studio 2017, go to the Visual Studio downloads page to install it for free.

    If you need to install the workload but already have Visual Studio, go to Tools > Get Tools and Features..., which opens the Visual Studio Installer. Choose the Node.js development workload, then choose Modify.

  • You must have the Node.js runtime installed.

    This tutorial was tested with version 12.6.2.

    If you don't have it installed, we recommend you install the LTS version from the Node.js website for best compatibility with outside frameworks and libraries. Node.js is built for 32-bit and 64-bit architectures. The Node.js tools in Visual Studio, included in the Node.js workload, support both versions. Only one is required and the Node.js installer only supports one being installed at a time.

    In general, Visual Studio automatically detects the installed Node.js runtime. If it does not detect an installed runtime, you can configure your project to reference the installed runtime in the properties page (after you create a project, right-click the project node, choose Properties, and set the Node.exe path). You can use a global installation of Node.js or you can specify the path to a local interpreter in each of your Node.js projects.

Create a project

First, create a Node.js web application project.

  1. Open Visual Studio.

  2. Create a new project.

    Press Esc to close the start window. Type Ctrl + Q to open the search box, type Node.js, then choose Blank Node.js Web Application - JavaScript. (Although this tutorial uses the TypeScript compiler, the steps require that you start with the JavaScript template.)

    In the dialog box that appears, choose Create.

    From the top menu bar, choose File > New > Project. In the left pane of the New Project dialog box, expand JavaScript, then choose Node.js. In the middle pane, choose Blank Node.js Web Application, type the name NodejsWebAppBlank, then choose OK.

    If you don't see the Blank Node.js Web Application project template, you must add the Node.js development workload. For detailed instructions, see the Prerequisites.

    Visual Studio creates the new solution and opens your project.

    (1) Highlighted in bold is your project, using the name you gave in the New Project dialog box. In the file system, this project is represented by a .njsproj file in your project folder. You can set properties and environment variables associated with the project by right-clicking the project and choosing Properties. You can do round-tripping with other development tools, because the project file does not make custom changes to the Node.js project source.

    (2) At the top level is a solution, which by default has the same name as your project. A solution, represented by a .sln file on disk, is a container for one or more related projects.

    (3) The npm node shows any installed npm packages. You can right-click the npm node to search for and install npm packages using a dialog box or install and update packages using the settings in package.json and right-click options in the npm node.

    (4) package.json is a file used by npm to manage package dependencies and package versions for locally-installed packages. For more information, see Manage npm packages.

    (5) Project files such as server.js show up under the project node. server.js is the project startup file and that is why it shows up in bold. You can set the startup file by right-clicking a file in the project and selecting Set as Node.js startup file.

Add npm packages

This app requires a number of npm modules to run correctly.

  • react
  • react-dom
  • express
  • path
  • ts-loader
  • typescript
  • webpack
  • webpack-cli
  1. In Solution Explorer (right pane), right-click the npm node in the project and choose Install New npm Packages.

    In the Install New npm Packages dialog box, you can choose to install the most current package version or specify a version. If you choose to install the current version of these packages, but run into unexpected errors later, you may want to install the exact package versions described later in these steps.

  2. In the Install New npm Packages dialog box, search for the react package, and select Install Package to install it.

    Select the Output window to see progress on installing the package (select Npm in the Show output from field). When installed, the package appears under the npm node.

    The project's package.json file is updated with the new package information including the package version.

  3. Instead of using the UI to search for and add the rest of the packages one at a time, paste the following code into package.json. To do this, add a dependencies section with this code:

    If there is already a dependencies section in your version of the blank template, just replace it with the preceding JSON code. For more information on use of this file, see package.json configuration.

  4. Save the changes.

  5. Right-click npm node in your project and choose Install npm Packages.

    This command runs the npm install command directly.

    In the lower pane, select the Output window to see progress on installing the packages. Installation may take a few minutes and you may not see results immediately. To see the output, make sure that you select Npm in the Show output from field in the Output window.

    Here are the npm modules as they appear in Solution Explorer after they are installed.

    Note

    If you prefer to install npm packages using the command line, right-click the project node and choose Open Command Prompt Here. Use standard Node.js commands to install packages.

Add project files

In these steps, you add four new files to your project.

  • app.tsx
  • webpack-config.js
  • index.html
  • tsconfig.json

For this simple app, you add the new project files in the project root. (In most apps, you typically add the files to subfolders and adjust relative path references accordingly.)

  1. In Solution Explorer, right-click the project NodejsWebAppBlank and choose Add > New Item.

  2. In the Add New Item dialog box, choose TypeScript JSX file, type the name app.tsx, and select Add or OK.

  3. Repeat these steps to add webpack-config.js. Instead of a TypeScript JSX file, choose JavaScript file.

  4. Repeat the same steps to add index.html to the project. Instead of a JavaScript file, choose HTML file.

  5. Repeat the same steps to add tsconfig.json to the project. Instead of a JavaScript file, choose TypeScript JSON Configuration file.

Add app code

Vscode
  1. Open server.js and replace the existing code with the following code:

    The preceding code uses Express to start Node.js as your web application server. This code sets the port to the port number configured in the project properties (by default, the port is configured to 1337 in the properties). To open the project properties, right-click the project in Solution Explorer and choose Properties.

  2. Open app.tsx and add the following code:

    The preceding code uses JSX syntax and React to display a simple message.

  3. Open index.html and replace the body section with the following code:

    This HTML page loads app-bundle.js, which contains the JSX and React code transpiled to plain JavaScript. Currently, app-bundle.js is an empty file. In the next section, you configure options to transpile the code.

Configure webpack and TypeScript compiler options

In the previous steps, you added webpack-config.js to the project. Next, you add webpack configuration code. You will add a simple webpack configuration that specifies an input file (app.tsx) and an output file (app-bundle.js) for bundling and transpiling JSX to plain JavaScript. For transpiling, you also configure some TypeScript compiler options. This code is a basic configuration that is intended as an introduction to webpack and the TypeScript compiler.

  1. In Solution Explorer, open webpack-config.js and add the following code.

    The webpack configuration code instructs webpack to use the TypeScript loader to transpile the JSX.

  2. Open tsconfig.json and replace the default code with the following code, which specifies the TypeScript compiler options:

    app.tsx is specified as the source file.

Transpile the JSX

  1. In Solution Explorer, right-click the project node and choose Open Command Prompt Here.

  2. In the command prompt, type the following command:

    node_modules.binwebpack app.tsx --config webpack-config.js

    The command prompt window shows the result.

    If you see any errors instead of the preceding output, you must resolve them before your app will work. If your npm package versions are different than the versions shown in this tutorial, that can be a source of errors. One way to fix errors is to use the exact versions shown in the earlier steps. Also, if one or more of these package versions has been deprecated and results in an error, you may need to install a more recent version to fix errors. For information on using package.json to control npm package versions, see package.json configuration.

  3. In Solution Explorer, right-click the project node and choose Add > Existing Folder, then choose the dist folder and choose Select Folder.

    Visual Studio adds the dist folder to the project, which contains app-bundle.js and app-bundle.js.map.

  4. Open app-bundle.js to see the transpiled JavaScript code.

  5. If prompted to reload externally modified files, select Yes to All.

Each time you make changes to app.tsx, you must rerun the webpack command. To automate this step, add a build script to transpile the JSX.

Add a build script to transpile the JSX

Starting in Visual Studio 2019, a build script is required. Instead of transpiling JSX at the command line (as shown in the preceding section), you can transpile JSX when building from Visual Studio.

  • Open package.json and add the following section after the dependencies section:

Run the app

  1. Select either Web Server (Google Chrome) or Web Server (Microsoft Edge) as the current debug target.

    If Chrome is available on your machine, but does not show up as an option, choose Browse With from the debug target dropdown list, and select Chrome as the default browser target (choose Set as Default).

  2. To run the app, press F5 (Debug > Start Debugging) or the green arrow button.

    A Node.js console window opens that shows the port on which the debugger is listening.

    Visual Studio starts the app by launching the startup file, server.js.

  3. Close the browser window.

  4. Close the console window.

Set a breakpoint and run the app

  1. In server.js, click in the gutter to the left of the staticPath declaration to set a breakpoint:

    Breakpoints are the most basic and essential feature of reliable debugging. A breakpoint indicates where Visual Studio should suspend your running code so you can take a look at the values of variables, or the behavior of memory, or whether or not a branch of code is getting run.

  2. To run the app, press F5 (Debug > Start Debugging).

    The debugger pauses at the breakpoint you set (the current statement is marked in yellow). Now, you can inspect your app state by hovering over variables that are currently in scope, using debugger windows like the Locals and Watch windows.

  3. Press F5 to continue the app.

  4. If you want to use the Chrome Developer Tools or F12 Tools for Microsoft Edge, press F12. You can use these tools to examine the DOM and interact with the app using the JavaScript Console.

  5. Close the web browser and the console.

Vscode React

Set and hit a breakpoint in the client-side React code

In the preceding section, you attached the debugger to server-side Node.js code. To attach the debugger from Visual Studio and hit breakpoints in client-side React code, the debugger needs help to identify the correct process. Here is one way to enable this.

Prepare the browser for debugging

For this scenario, use either Microsoft Edge (Chromium), currently named Microsoft Edge Beta in the IDE, or Chrome.

  1. Close all windows for the target browser.

    Other browser instances can prevent the browser from opening with debugging enabled. (Browser extensions may be running and preventing full debug mode, so you may need to open Task Manager to find unexpected instances of Chrome.)

    For Microsoft Edge (Chromium), also shut down all instances of Chrome. Because both browsers share the chromium code base, this gives the best results.

  2. Start your browser with debugging enabled.

    Starting in Visual Studio 2019, you can set the --remote-debugging-port=9222 flag at browser launch by selecting Browse With... > from the Debug toolbar, then choosing Add, and then setting the flag in the Arguments field. Use a different friendly name for the browser such as Edge with Debugging or Chrome with Debugging. For details, see the Release Notes.

    Alternatively, open the Run command from the Windows Start button (right-click and choose Run), and enter the following command:

    msedge --remote-debugging-port=9222

    or,

    chrome.exe --remote-debugging-port=9222

    Open the Run command from the Windows Start button (right-click and choose Run), and enter the following command:

    chrome.exe --remote-debugging-port=9222

    This starts your browser with debugging enabled.

    The app is not yet running, so you get an empty browser page.

Visual Studio React Typescript

Attach the debugger to client-side script

Visual Studio React Project

  1. Switch to Visual Studio and then set a breakpoint in your source code, either app-bundle.js or app.tsx.

    For app-bundle.js, set the breakpoint in the render() function as shown in the following illustration:

    To find the render() function in the transpiled app-bundle.js file, use Ctrl+F (Edit > Find and Replace > Quick Find).

    For app.tsx, set the breakpoint inside the render() function, on the return statement.

  2. If you are setting the breakpoint in the .tsx file (rather than app-bundle.js), you need to update webpack-config.js. Replace the following code:

    with this code:

    This is a development-only setting to enable debugging in Visual Studio. This setting allows you to override the generated references in the source map file, app-bundle.js.map, when building the app. By default, webpack references in the source map file include the webpack:/// prefix, which prevents Visual Studio from finding the source file, app.tsx. Specifically, when you make this change, the reference to the source file, app.tsx, gets changed from webpack:///./app.tsx to ./app.tsx, which enables debugging.

  3. Select your target browser as the debug target in Visual Studio, then press Ctrl+F5 (Debug > Start Without Debugging) to run the app in the browser.

    If you created a browser configuration with a friendly name, choose that as your debug target.

    The app opens in a new browser tab.

  4. Choose Debug > Attach to Process.

    Tip

    Starting in Visual Studio 2017, once you attach to the process the first time by following these steps, you can quickly reattach to the same process by choosing Debug > Reattach to Process.

  5. In the Attach to Process dialog box, get a filtered list of browser instances that you can attach to.

    In Visual Studio 2019, choose the correct debugger for your target browser, JavaScript (Chrome) or JavaScript (Microsoft Edge - Chromium) in the Attach to field, type chrome or edge in the filter box to filter the search results.

    In Visual Studio 2017, choose Webkit code in the Attach to field, type chrome in the filter box to filter the search results.

  6. Select the browser process with the correct host port (localhost in this example), and select Attach.

    The port (1337) may also appear in the Title field to help you select the correct browser instance.

    The following example shows how this looks for the Microsoft Edge (Chromium) browser.

    You know the debugger has attached correctly when the DOM Explorer and the JavaScript Console open in Visual Studio. These debugging tools are similar to Chrome Developer Tools and F12 Tools for Microsoft Edge.

    Tip

    If the debugger does not attach and you see the message 'Unable to attach to the process. An operation is not legal in the current state.', use the Task Manager to close all instances of the target browser before starting the browser in debugging mode. Browser extensions may be running and preventing full debug mode.

  7. Because the code with the breakpoint already executed, refresh your browser page to hit the breakpoint.

    While paused in the debugger, you can examine your app state by hovering over variables and using debugger windows. You can advance the debugger by stepping through code (F5, F10, and F11). For more information on basic debugging features, see First look at the debugger.

    You may hit the breakpoint in either app-bundle.js or its mapped location in app.tsx, depending on which steps you followed previously, along with your environment and browser state. Either way, you can step through code and examine variables.

    • If you need to break into code in app.tsx and are unable to do it, use Attach to Process as described in the previous steps to attach the debugger. Make sure you that your environment is set up correctly:

      • You closed all browser instances, including Chrome extensions (using the Task Manager), so that you can run the browser in debug mode. Make sure you start the browser in debug mode.

      • Make sure that your source map file includes a reference to ./app.tsx and not webpack:///./app.tsx, which prevents the Visual Studio debugger from locating app.tsx.Alternatively, if you need to break into code in app.tsx and are unable to do it, try using the debugger; statement in app.tsx, or set breakpoints in the Chrome Developer Tools (or F12 Tools for Microsoft Edge) instead.

    • If you need to break into code in app-bundle.js and are unable to do it, remove the source map file, app-bundle.js.map.

Visual Studio React Native

Next steps